New routes towards high redshift supermassive black holes

Yifan Lu (UCLA) PACIFIC Conference, August 2024

Based on

[1] Phys. Rev. D 109 (2024), 123016 (arXiv: 2312.15062) [2] Phys. Rev. Lett. 133 (2024), 091001 (arXiv: 2404.03909)

• Collaborators:

Zachary Picker

Alexander Kusenko

Outline

- The mystery of high redshift supermassive black holes
- Direct collapse mechanism
- Recipe I: heating via tiny primordial black holes
- Recipe II: dissociation via relic particle decay
- Observational signature and SMBH abundance

• A SMBH population has been known to exist at z~6.

A 3×10^9 SOLAR MASS BLACK HOLE IN THE QUASAR SDSS J1148+5251 AT Z = 6.41

Chris J. Willott Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, B.C. V9E 2E7, Canada chris.willott@nrc.ca

Ross J. McLure Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K. rjm@roe.ac.uk

AND

MATT J. JARVIS Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH, U.K. mjj@astro.ox.ac.uk

[Willott et al., 2003]

[Volonteri & Stark, 2011]

JWST discoveries show that quasars are just the tip of the iceberg...

EPOCHS VII: Discovery of high redshift (6.5 < z < 12) AGN candidates in A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big JWST ERO and PEARLS data **Bang:** Identifying a Progenitor of Massive z > 6 Quasars

Rebecca L. Larson^{1,40}⁽⁰⁾, Steven L. Finkelstein¹⁽⁰⁾, Dale D. Kocevski²⁽⁰⁾, Taylor A. Hutchison^{3,41}⁽⁰⁾, Jonathan R. Trump⁴⁽⁰⁾, Ignas Juodžbalis,^{1*} Christopher J. Conselice,¹ Maitrayee Singh,¹ Nathan Adams,¹ Pablo Arrabal Haro⁵⁽⁰⁾, Volker Bromm⁶⁽⁰⁾, Nikko J. Cleri^{7,8}⁽⁰⁾, Mark Dickinson⁵⁽⁰⁾, Seiji Fujimoto¹⁽⁰⁾, Jeyhan S. Kartaltepe⁹⁽⁰⁾ Anton M. Koekemoer¹⁰, Casey Papovich^{7,8}, Nor Pirzkal¹¹, Sandro Tacchella^{12,13}, Jorge A. Zavala¹⁴, Katherine Ormerod,¹ Thomas Harvey,¹ Duncan Austin,¹ Marta Volonteri,² Seth H. Cohen, ³ Micaela Bagley¹⁽⁰⁾, Peter Behroozi^{15,16}⁽⁰⁾, Jaclyn B. Champagne¹⁷⁽⁰⁾, Justin W. Cole^{7,8}⁽⁰⁾, Intae Jung¹⁰⁽⁰⁾, Alexa M. Morales¹⁸⁽⁰⁾, Guang Yang^{19,20}⁽⁰⁾, Haowen Zhang¹⁵⁽⁰⁾, Adi Zitrin²¹⁽⁰⁾, Ricardo O. Amorín^{22,23}⁽⁰⁾, Denis Burgarella²⁴⁽⁰⁾, Caitlin M. Casey^{25,26}⁽⁰⁾, Óscar A. Chávez Ortiz⁶⁽⁰⁾, Isabella G. Cox⁹⁽⁰⁾, Katherine Chworowsky^{6,40}⁽⁰⁾, Adriano Fontana²⁷⁽⁰⁾, Eric Gawiser²⁸⁽⁰⁾, Rolf A. Jansen, ³ Jake Summers, ³ Rogier A. Windhorst, ³ Jordan C. J. D'Silva, ^{4,5} Anton M. Koekemoer, ⁶ Dan Coe, ^{6,7,8} Simon P. Driver, ⁴ Brenda Frye, ⁹ Norman A. Grogin, ⁶ Madeline A. Marshall, ^{10,5} Andrea Grazian²⁹⁽⁶⁾, Norman A. Grogin¹⁰⁽⁰⁾, Santosh Harish⁹⁽⁰⁾, Nimish P. Hathi³⁰⁽⁰⁾, Michaela Hirschmann³¹⁽⁰⁾, CEERS Key Paper VI: JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts Benne W. Holwerda³²^(b), Stéphanie Juneau³³^(c), Gene C. K. Leung³⁴^(b), Ray A. Lucas¹⁰^(c), Elizabeth J. McGrath²^(c), Pablo G. Pérez-González³⁵⁽⁰⁾, Jane R. Rigby³⁽⁰⁾, Lise-Marie Seillé²⁴⁽⁰⁾, Raymond C. Simons⁴⁽⁰⁾, Alexander de la Vega³⁶⁽⁰⁾, YANG, G. (杨光) ^{[0],1,2} CAPUTI, K. I.,^{1,3} PAPOVICH, C. ^{[0],4,5} ARRABAL HARO, P. ^{[0],6} BAGLEY, M. B. ^{[0],7} BEHROOZI, P. ^{[0],8,9}

A JWST/NIRSpec First Census of Broad-Line AGNs at z = 4 - 7:

Benjamin J. Weiner³⁷⁽⁰⁾, Stephen M. Wilkins^{38,39}⁽⁰⁾, and L. Y. Aaron Yung^{3,41}⁽⁰⁾ BELL, E. F. D, 10 BISIGELLO, L. D, 11, 12 BUAT, V. O, 13 BURGARELLA, D. O, 13 CHENG, Y. O, 14 CLERI, N. J. O, 4, 5 DAVÉ, R. O, 15, 16 DICKINSON, M. 00,6 ELBAZ, D. 00,17 FERGUSON, H. C. 00,18 FINKELSTEIN, S. L. 00,7 GROGIN, N. A. 00,19 HATHI, N. P. 00,18 HIRSCHMANN, M. D. 20 HOLWERDA, B. W. D. 21 HUERTAS-COMPANY, M. D. 22, 23, 24 HUTCHISON, T. A. D. 25, * IANI, E. D. 1 Detection of 10 Faint AGNs with $M_{\rm BH} \sim 10^6 - 10^8 \ M_{\odot}$ and Their Host Galaxy Properties KARTALTEPE, J. S. ^(D),²⁶ KIRKPATRICK, A. ^(D),²⁷ KOCEVSKI, D. D. ^(D),²⁸ KOEKEMOER, A. M. ^(D),¹⁹ KOKOREV, V. ^(D),¹ Yuichi Harikane,¹ Yechi Zhang,^{1,2} Kimihiko Nakajima,³ Masami Ouchi,^{3,1,4} Yuki Isobe,^{1,5} Yoshiaki Ono,¹ Shun Hatano,^{3,6} Yi Xu,^{1,2} and Hiroya Umeda^{1,5} LARSON, R. L. ^(D), ^{29,30} LUCAS, R. A. ^(D), ³¹ PÉREZ-GONZÁLEZ, P. G. ^(D), ³² RINALDI, P., ¹ SHEN, L. ^(D), ^{4,5} TRUMP, J. R. ^(D), ³³ DE LA VEGA A ^(D), ³⁴ VUNG L. V. A ^(D), ²⁵ AND ZAVALA I. A ^(D), ³⁵

¹Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba ²Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo,

³National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588. ⁴Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa,

^oDepartment of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 7

⁶Department of Astronomical Science, The Graduate University for Advanced Studies, SOKENDAI, 2-21-181-8588, Japan

Hannah Übler^{1,2*}, Roberto Maiolino^{1,2,3}, Emma Curtis-Lake⁴, Pablo G. Pérez-González⁵, Mirko Curti^{6,1,2}, Michele Perna⁵, Santiago Arribas⁵, Stéphane Charlot⁷, Madeline A. Marshall^{8,9}, Francesco D'Eugenio^{1,2}, Jan Scholtz^{1,2}, Andrew Bunker¹⁰, Stefano Carniani¹¹, Pierre Ferruit¹², Peter Jakobsen^{13, 14}, Hans-Walter Rix¹⁵, Bruno Rodríguez Del Pino⁵, Chris J. Willott⁸, Torsten Böker¹⁶, Giovanni Cresci¹⁷, Gareth C. Jones¹⁰, Nimisha Kumari¹⁸, and Tim Rawle¹⁶

GA-NIFS: A massive black hole in a low-metallicity AGN at $z \sim 5.55$ revealed by JWST/NIRSpec IFS

• JWST discoveries show that quasars are just the tip of the iceberg...

- An AGN is found when the universe is only 0.43 Gyr old!

JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy

Andrew J. Bunker^{1,*}, Aayush Saxena^{1,2}, Alex J. Cameron¹, Chris J. Willott³, Emma Curtis-Lake⁴, Peter Jakobsen^{5,6}, Stefano Carniani⁷, Renske Smit⁸, Roberto Maiolino^{9,10,2}, Joris Witstok^{9,10}, Mirko Curti^{9,10,11}, Francesco D'Eugenio^{9,10}, Gareth C. Jones¹, Pierre Ferruit¹², Santiago Arribas¹³, Stephane Charlot¹⁴, Jacopo Chevallard¹, Giovanna Giardino¹⁵, Anna de Graaff¹⁶, Tobias J. Looser^{9,10}, Nora Lützgendorf¹⁷, Michael V. Maseda¹⁸, Tim Rawle¹⁷, Hans-Walter Rix¹⁶, Bruno Rodríguez Del Pino¹³, Stacey Alberts¹⁹, Eiichi Egami¹⁹, Daniel J. Eisenstein²⁰, Ryan Endsley²¹, Kevin Hainline¹⁹, Ryan Hausen²², Benjamin D. Johnson²⁰, George Rieke¹⁹, Marcia Rieke¹⁹, Brant E. Robertson²³, Irene Shivaei¹⁹, Daniel P. Stark¹⁹, Fengwu Sun¹⁹, Sandro Tacchella^{9,10}, Mengtao Tang¹⁹, Christina C. Williams^{24,19}, Christopher N. A. Willmer¹⁹, William M. Baker^{9,10}, Stefi Baum²⁵, Rachana Bhatawdekar^{12,26}, Rebecca Bowler²⁷, Kristan Boyett^{28,29}, Zuyi Chen¹⁹, Chiara Circosta¹², Jakob M. Helton¹⁹, Zhiyuan Ji¹⁹, Jianwei Lyu¹⁹, Erica Nelson³⁰, Eleonora Parlanti⁷, Michele Perna¹³, Lester Sandles^{9,10}, Jan Scholtz^{9,10}, Katherine A. Suess^{23,31}, Michael W. Topping¹⁹, Hannah Übler^{9,10}, Imaan E. B. Wallace¹, and Lily Whitler¹⁹

- galaxy formation at high redshift:
 - mass is about $10^2 M_{\odot}$
 - They need to grow to $10^9 \, M_{\odot}$ by z~6
 - magnitude
 - The age of the universe at z=6 is ~0.9 Gyr!

• The existence of these SMBHs poses a severe challenge in our understanding of

- If they come from the remnant of the first generation (Pop III) stars, the seed

- Accretion is Eddington limited: it takes about 0.8 Gyr to grow up 7 orders of

- Why are they there?
 - Eddington accretion \rightarrow Very difficult
 - arbitrary mass.
 - heavy, direct collapse black hole is produced \rightarrow This talk

- Primordial seeds: PBHs are already formed before galaxies, with

- Heavy seeds: if the gas cloud can collapse without fragmentation, a

Outline

- The mystery of high redshift supermassive black holes
- Direct collapse mechanism
- Recipe I: heating via tiny primordial black holes
- Recipe II: dissociation via relic particle decay
- Observational signature and SMBH abundance

- General conditions for direct collapse black holes:
 - Halos with mass > $10^8~M_{\odot}$ (virial temperature > $10^4~K$)
 - Collapse at high redshift (z ~ 20)
 - Primordial metal-free gas: hydrogen (in various forms), ionized electron, helium (and lithium)
 - Suppression of gas fragmentation

- Only two channels dominate the cooling process: molecular hydrogen (H_2) , atomic hydrogen
- Atomic hydrogen cooling is inefficient when $T < 10^4 K$
- H_2 cooling takes over this regime due to fine spaced rotational-vibrational energy levels

[Shaw et al., 2005]

- Cooling is undesirable for direct collapse: Rapid cooling → gas fragmentation → star formation
- The suppression of H_2 formation is the key to ensure direct collapse
 - The cloud collapses almost isothermally at $T\sim 10^4~K$ without fragmentation

[Inayoshi et al., 2019]

• Other important astrophysical processes in direct collapse:

- Angular momentum transport from the central compact object during collapse
- The formation of supermassive star in the central region and its GR instability
- See Inayoshi et al., 2019 for an excellent review
- We will only focus on the 'early stage' of the evolution.

Direct collapse: the key ingredients

- DM & baryon dynamics:
 - Spherical top-hat (z ~ 1000 virialization)
 - Baryon free fall after virialization due to cooling
 - DM adiabatic contraction
- Chemical evolution of the baryonic sector

→ Collapse model and chemical evolution are combined to track the temperature

Direct collapse: the one zone model

- In lack of hydrodynamical simulation, Omukai suggested taking the DM and baryon density to be uniform [Omukai, 2001]
- This is motivated by the uniform density core in Penston-Larson solutions

[Larson, 1969]

Direct collapse: chemistry

- 12 reactions tracked in the Boltzmann equation:
 - Free electron
 - H₂: Two step process

$$H + e^- \rightarrow H^- + \gamma$$

 $H^- + H \rightarrow H_2 + e^-$

- Atomic hydrogen is determined from the total baryon density
- Helium does not contribute significantly (but can be incorporated into the network)

[Hirata & Padmanabhan, 2006]

Direct collapse: chemistry

- How to destroy H_2 ?
 - Directly dissociate it with photons (photodissociation)

 - Heat the gas to increase collision rates (collisional dissociation)

Need eV photons (in the Lyman-Werner band)

- Destroy intermediate product H^- with photons (photodetachment)

Need additional heating mechanism

Direct collapse: recipes

- The standard recipe: a nearby star forming galaxy
 - LW radiation (11.2 13.6 eV) can be produced by star formation process
 - Two galaxies has to to get close (for high LW intensity)
 - Radiation has to penetrate the cloud into the core region
 - Could be polluted by metals due to star formation (and giving much higher cooling rates)!

Direct collapse: recipes

- Our recipes:
 - Heating by PBH evaporation
- Allow for direct collapse at essentially arbitrary high redshift
- Avoid issues such as penetration depth and metal pollution
- Offer a new window to test/constrain astroparticle physics models!

- LW radiation from ALP decay (originated from [Friedlander et al, 2022])

Outline

- The mystery of high redshift supermassive black holes
- Direct collapse mechanism
- Recipe I: heating via tiny primordial black holes
- Recipe II: dissociation via relic particle decay
- Observational signature and SMBH abundance

Feeding plankton to whales: high-redshift supermassive black holes from tiny black hole explosions

Yifan Lu,^{1, *} Zachary S. C. Picker,^{1, †} and Alexander Kusenko^{1, 2, ‡}

PBHheating

 PBHs are capable of injecting energy into the baryon sector by evaporation:

- Higher injection rate near the end of lifetime: ideal lifetime ends near collapse redshift $\rightarrow M_{PBH} \sim 10^{14} g$
- Heating from attenuated secondary spectral (electrons, photons, protons)

[Mosbech & Picker, 2022]

PBH heating

PBH clustering

- PBH abundance is strongly constrained in this mass range from 21 cm and CMB observations.
- But PBH clustering is a feature in many formation scenarios:
 - Primordial non-Gaussianity in critical collapse
 - Yukawa structure formation in the dark sector (no explicit calculation as far as I know)

[Cang et al., 2021]

[Young & Byrnes, 2019]

Outline

- The mystery of high redshift supermassive black holes
- Direct collapse mechanism
- Recipe I: heating via tiny primordial black holes
- Recipe II: dissociation via relic particle decay
- Observational signature and SMBH abundance

Dissociation of H2

- (particle X, with higher decay rate)
 - Two body decay: monochromatic (relevant for ALP)
 - Three body decay: parabola (generic for energy independent amplitudes)

Photodissociation & photodetachment require a LW radiation background.

ALP decay can produce such a background! (Ruled out for QCD axions)

• They can be ALL of the DM (with a low decay rate), or a fraction of DM

Bifurcation

ALP decay

[Credit: Ciaran O'Hare]

Xdecay

- The required decay fraction is much lower compared to heating.
- Only very weak constraints (CMB spectral distortion) exist below the ionization threshold
- The decay redshift does not need to be fine tuned! (Span from z=50 ~ 5 if the halo collapses at z=20)

Outline

- The mystery of high redshift supermassive black holes
- Direct collapse mechanism
- Recipe I: heating via tiny primordial black holes
- Recipe II: dissociation via relic particle decay
- Observational signature and SMBH abundance

SMBHabundance

- ALP decay can trigger direct collapse in all eligible halos
- halos
 - Clustering is model dependent
 - Uncertainty in AGN/quasar density

[Friedlander et al., 2022]

• In the case of PBH heating, direct collapse happens in rare, highly clustered

Observational signature

- PBH evaporation with local clustering can create 'hot spots':
 - Point-like X-ray/gamma-ray sources?
 - Small scale infrared background excess by PBH heating? (Could be overwhelmed by collapsing BH itself)
 - Constraints have not been studied in this scenario
- ALP decay in our mass range produces UV—optical light
 - Future HST measurements can probe/constrain the parameter space [Carenza et al., 2023]

Summary

- this is a topic with increasing importance given JWST observations.
- Traditional direct collapse mechanisms may face challenges.
- collapse process, alleviating tensions with observations.
- Hydrodynamic simulation can test our model beyond the one-zone regime.
- and LISA.

• Our current understanding of the origin of high redshift SMBH is not complete, and

• Well motivated astroparticle physics models can be incorporated into the direct

• Direct collapse black holes have many signatures (gravitational waves, X ray, IR emission...) that can be tested with current and near future instruments such as JWST

Thank you!

Supplemental slides

Densities in the one zone model

- Before virialization: $1 + \delta = \frac{9}{2} \frac{(\alpha \sin \alpha)^2}{(1 \cos \alpha)^3}$
- DM undergoes adiabatic contraction due to the changing gravitational potential:

 $r(M_b(r) + M_{DM}(r)) = r_i M_i(r_i)$

 $(\alpha)^2$ $(\alpha)^3$ on due ntial:

Cooling channels

- Adiabatic cooling (heating)
- Inverse Compton: $L_{ic}(T) = 1.017 \times 10^{-44} T_{CMB}^4 (T T_{CMB}) x_e n$
- Hydrogen line:

Molecular hydrogen: taken from Hollenbach & McKee, 1979

$L_{HI}(T) = 7.9 \times 10^{-26} \left(1 + \left(\frac{T}{10^5 \text{ K}}\right)^{0.5} \right)^{-1} \times \exp(-118348 \text{ K/T}) n_e n_H$

Heating/Cooling channels

Direct collapse

Fragmentation

PBH clustering

[Young & Byrnes, 2019]

• Primordial non-Gaussianity: $\zeta = \zeta_G + \frac{3}{5} f_{\text{NL}} \left(\zeta_G^2 - \left\langle \delta_G^2 \right\rangle \right)$

LW intensity

• The one-zone intensity:

 $\frac{dn_{\gamma}}{dEdt}$ is given by the particle physics model, some spectra we considered:

- Two body decay: monochromatic (relevant for ALP)

- k_{H_2} and k_{H^-} can be calculated from J

 $J(E,z) = E \left[\frac{dn_{\gamma}}{dFdt} (r', E, z) \right]$

- Three body decay: parabola (generic for energy independent amplitudes)

LW rates

 $k_{\rm H_2}(z) \approx 1.39$

$$\times 10^{-12} \text{ s}^{-1} \frac{J_{LW}(z)}{J_{21}}$$

 $J_{21} = 10^{-21} \text{erg s}^{-1} \text{Hz}^{-1} \text{cm}^{-2} \text{sr}^{-1}$

Injection rate

Two body: $E \frac{dN}{dE} = 2\delta \left(1 - \frac{2E}{m_{\rm Y}}\right)$

$$\frac{E}{m_X} - \left(\frac{E}{m_X}\right)^2 \left[\Theta \left(1 - \frac{E}{m_X}\right) \right]$$

Shielding

 $k_{H_2}(N_{H_2}, T) = k_{H_2}f_{\text{shield}}(N_{H_2}, T)$ UC Strong absorption

• Not all LW radiation can penetrate the cloud (at least in the traditional scenario) • Modeling column density is intractable even in hydrodynamic simulations!

$f_{in-situ} = 1 - \varepsilon_{sh}(1 - f_{\text{shield}})$

Comparison to critical curve

- The critical curve for LW background:
 - Only works for a constant background
 - Only exterior source
 - No dynamics
- No simulation available with a consistent shield fraction
- Even a moderate reduction increases the rates by orders of magnitude!

